On boundary behaviour of the Bergman projection on pseudoconvex domains
نویسندگان
چکیده
منابع مشابه
Boundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "
Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.
متن کاملIrregularity of the Bergman Projection on Worm Domains in C
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
متن کاملAnalytic Functionals and the Bergman Projection on Circular Domains
A property of the Bergman projection associated to a bounded circular domain containing the origin in C^ is proved: Functions which extend to be holomorphic in large neighborhoods of the origin are characterized as Bergman projections of smooth functions with small support near the origin. For certain circular domains D, it is also shown that functions which extend holomorphically to a neighbor...
متن کاملThe Bergman Kernel and Projection on Non-smooth Worm Domains
We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2005
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm166-3-3